External Plasma-Breathing Magnetohydrodynamic Propulsion

Eric Anthony Comstock

Graduate Researcher eric.comstock@gatech.edu Álvaro Romero-Calvo

Assistant Professor

alvaro.romerocalvo@gatech.edu

Georgia Space Systems
Tech Design Laboratory

Space Debris and Mitigation Strategies

Debris Tether Space tug Impulse transfer thruster Ion force **GEO-Debris Injected Electrostatic Force Fie**

NASA Simulation

Trushlyakov, V & Yudintsev, Vadim. (2019). Rotating tethered system for active space debris removal.

Atmosphere-Breathing Electric Propulsion (ABEP)

Romano, F., et al., System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster (2018)

Jackson, S. W., Design of an Air-Breathing Electric Thruster for CubeSat Applications (2017)

Andreussi, et al., Development and Experimental Validation of a Hall Effect Thruster RAM-EP Concept (2017)

Souhair, et al., Prediction of the Propulsive Performance of an Atmosphere-Breathing Electric Propulsion System on Cathode-Less Plasma Thruster (2023)

Simulation techniques

Simulation techniques	
\n $\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla_x f + q \left(E + \frac{p}{m} \times B \right) \cdot \nabla_p f = 0$ \n	
6D Vlasov	5D Vlasov
\n • Collisionless flow simulation \n • Wagneric forces cannot act out-of-plane \n • Put-of-plane \n • Put-of-plane velocities not \n • Plas \n • Pres\n	

6D Vlasov

-
- •Velocity distribution tracking
- •Pros
	- •More accurate
- •Better physical modelling
- •Cons
	- •Extremely high computational cost

5D Vlasov

- •Magnetic forces cannot act out-of-plane
- •Out-of-plane velocities not needed
- •Pros
	- •Lower computational cost
- •Cons
	- •Potentially less accurate

Verdict: Prohibitive cost Verdict: Useful for verification Verdict: Requires verification

3D Ohmic analysis

- •3D continuous model
	- •E & B fields
	- •Plasma conductivity
- •Pros
	- •Low computational cost
- •Cons
	- •Less physical modelling

Verification and Comparison

- Test case used to verify Ohmic analysis 5x10³-
	- Passive drag of a spacecraft in LEO 4×10^3
	- Performance measured
using effective I_{sp}
D Vlasov simulation using effective I_{sp}
- 5D Vlasov simulation
	- Converges to near Ohmic result

Linear scaling of Conductive MHD Patch

- Active and passive mode thrusts analyzed for a linear scaling
	- $M \sim L^3$
- Active thrust $F_a \sim M$
	- Power $P \sim M$
	- Passive thrust $F_p \sim M$

No performance difference based on the size of the satellite!

13

 $\widehat{}$

 \mathcal{D}

 \odot

 \mathcal{D}

Electromagnetic Characterization

gnetic Characterization

B-field (T)
 $\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{$ $5.0 2.5$ $0.0 0.0 -$ Conductors -25 Conductors -0.8 $-2.5 -2.5$ Depth (mm) -20 Depth (mm) Magnet Block Magnet Block $-5.0 -5.0$ F 0.6 - 15 $-7.5 -7.5$ 0.4 - 10 $-10.0 -10.0$ -12.5 $-12.5 -$ - 5 -0.2 -15.0 -10.0 -15.0 7.5 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -10.0 -7.5 -5.0 -2.5 $0.0\,$ 2.5 5.0 10.0 Width (mm) Width (mm) o LGST
Sallab

14

Plasma conductivity

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Similar performance, More widely applicable!

Next steps

- Better quantify sources of drag
	- Higher-fidelity simulations
		- Full 6D Vlasov
		- Particle-in-cell
- Understand effects of Debye screening
	- Much more relevant at large device sizes
- Other applications
	- Station-keeping
	- Inclination changes

Conclusion

- Space debris is a prominent challenge, especially in LEO
- Conductive MHD is effective in LEO for both small and large satellites • Favorable failure mode – passive drag
• Fassive vs. Active modes
• Fassive vs. Active modes
• Efficiency dependent on latitude due to plasma density variations
• Efficiency dependent on latitude due to plasma density var
	- Passive vs. Active modes
	- Efficiency dependent on latitude due to plasma density variations
- MHD propulsion has few of the downsides of traditional ABEP
	- No bulky ion collectors
	- Low-volume
	-

Questions?

<u>lin</u>

E

eric.comstock@gatech.edu

https://www.linkedin.com/in/eric-comstock-999483232

https://ericanthonycomstock.com

More information available at lowgravitylab.ae.gatech.edu

Ohmic analysis

• A simple simulation scheme assuming a 3D continuous model

- Lorentz Force: $f = J \times B$
- Ohm's law: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \frac{J}{\sigma}$ σ

Active Passive

- Pros
	- Low computational cost
- Cons
	- Less physical modelling
		- E & B fields
		- Plasma conductivity
- Verdict: Requires verification by better model

Full 6D Vlasov Simulation **II 6D Vlasov Simulation**
 III y-kinetic plasma simulation

• Collisionless flow

• Velocity distribution tracking

• **Position**

- Fully-kinetic plasma simulation
	-
	- Velocity distribution tracking
- Pros
	- More accurate
	- Better physical modelling
- Cons
	- 6 dimensions
	- Extremely high computational cost
- Verdict: Computational cost prohibitive

$$
\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla_x f + q \left(E + \frac{p}{m} \times B \right) \cdot \nabla_p f = 0
$$

Simplified 5D Vlasov Simulation

- Simplify based on the problem
	- Magnetic forces cannot act out-of-plane
	- Out-of-plane velocities not needed
- Pros
	- Lower computational cost
- Cons
	- Still 5 dimensional
	- Potentially less accurate
- Verdict: Used for verifying Ohmic analysis

Examples

- Use cases
	- Small vs. large
	- Inclined vs. equatorial
- Passive vs Active
	- Satellite lifetime

