External Plasma-Breathing Magnetohydrodynamic Propulsion

Eric Anthony Comstock

Graduate Researcher eric.comstock@gatech.edu Álvaro Romero-Calvo

Assistant Professor

alvaro.romerocalvo@gatech.edu

Georgia Space Systems Tech Design Laboratory

Space Debris and Mitigation Strategies

Debris Tether Space tug Impulse transfer thruster Ion beam Ion force Xenon tank Solar panel Inertial Thrusting GLiDeR **GEO-Debris** Electrostatic Tractor **Injected Electrostatic** Active Electrostatic Force Fie orce Field

NASA Simulation

Trushlyakov, V & Yudintsev, Vadim. (2019). Rotating tethered system for active space debris removal.
Alexander S. Ledkov, Vladimir S. Aslanov (2023), Active space debris removal by ion multi -beam shepherd spacecraft
Hanspeter Schaub, Zoltán Sternovsky (2014), Active space debris charging for contactless electrostatic disposal maneuvers,

Atmosphere-Breathing Electric Propulsion (ABEP)

Romano, F., et al., System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster (2018)
Jackson, S. W., Design of an Air-Breathing Electric Thruster for CubeSat Applications (2017)
Andreussi, et al., Development and Experimental Validation of a Hall Effect Thruster RAM-EP Concept (2017)
Souhair, et al., Prediction of the Propulsive Performance of an Atmosphere-Breathing Electric Propulsion System on Cathode-Less Plasma Thruster (2023)

Simulation techniques

$$\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla_x f + q \left(E + \frac{p}{m} \times B \right) \cdot \nabla_p f = 0$$

6D Vlasov

- Collisionless flow simulation
- Velocity distribution tracking
- Pros
 - More accurate
- Better physical modelling
- Cons
 - Extremely high computational cost

Verdict: Prohibitive cost

5D Vlasov

- Magnetic forces cannot act out-of-plane
- Out-of-plane velocities not needed
- Pros
 - Lower computational cost
- Cons
- Potentially less accurate

Verdict: Useful for verification

3D Ohmic analysis

- •3D continuous model
 - E & B fields
 - Plasma conductivity
- Pros
 - •Low computational cost
- Cons
 - Less physical modelling

Verdict: Requires verification

Verification and Comparison

- Test case used to verify Ohmic analysis
 - Passive drag of a spacecraft in LEO
 - Performance measured using effective I_{sp}
- 5D Vlasov simulation
 - Converges to near Ohmic result

Linear scaling of Conductive MHD Patch

0

0

0

13

- Active and passive mode thrusts analyzed for a linear scaling
 - $M \sim L^3$
- Active thrust $F_a \sim M$
 - Power P~M
 - Passive thrust $F_p \sim M$

No performance difference based on the size of the satellite!

Electromagnetic Characterization

E-field (kV/m) 5.0 -5.0 2.5 - 1.0 2.5 -· 30 0.0 0.0 Conductors - 25 Conductors - 0.8 -2.5 --2.5 Depth (mm) Depth (mm) - 20 Magnet Block Magnet Block -5.0 --5.0 - 0.6 - 15 -7.5 --7.5 - 0.4 - 10 -10.0 --10.0- 5 -12.5 -12.5 -- 0.2 -15.0 -15.0 7.5 5.0 -10.0-7.5 -5.0-2.5 0.0 2.5 5.0 10.0 -10.0-7.5 -5.0-2.50.0 2.5 7.5 10.0 Width (mm) Width (mm)

B-field (T)

Plasma conductivity

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Performance

- Similar thrust-to-mass
- Similar thrust-to-power
- Higher orbits
- Wider size range

Similar performance, More widely applicable!

Next steps

- Better quantify sources of drag
 - Higher-fidelity simulations
 - Full 6D Vlasov
 - Particle-in-cell
- Understand effects of Debye screening
 - Much more relevant at large device sizes
- Other applications
 - Station-keeping
 - Inclination changes

Conclusion

- Space debris is a prominent challenge, especially in LEO
- Conductive MHD is effective in LEO for both small and large satellites
 - Passive vs. Active modes
 - Efficiency dependent on latitude due to plasma density variations
- MHD propulsion has few of the downsides of traditional ABEP
 - No bulky ion collectors
 - Low-volume
 - Favorable failure mode passive drag

^rLorentz Questions?

in

Ε

eric.comstock@gatech.edu

https://www.linkedin.com/in/eric-comstock-999483232

https://ericanthonycomstock.com

More information available at lowgravitylab.ae.gatech.edu

Ohmic analysis

• A simple simulation scheme assuming a 3D continuous model

- Lorentz Force: $f = J \times B$
- Ohm's law: $\boldsymbol{E} + \boldsymbol{\nu} \times \boldsymbol{B} = \frac{J}{\sigma}$

Active Passive

- Pros
 - Low computational cost
- Cons
 - Less physical modelling
 - E & B fields
 - Plasma conductivity
- Verdict: Requires verification by better model

Full 6D Vlasov Simulation

- Fully-kinetic plasma simulation
 - Collisionless flow
 - Velocity distribution tracking
- Pros
 - More accurate
 - Better physical modelling
- Cons
 - 6 dimensions
 - Extremely high computational cost
- Verdict: Computational cost prohibitive

$$\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla_x f + q \left(E + \frac{p}{m} \times B \right) \cdot \nabla_p f = 0$$

Simplified 5D Vlasov Simulation

- Simplify based on the problem
 - Magnetic forces cannot act out-of-plane
 - Out-of-plane velocities not needed
- Pros
 - Lower computational cost
- Cons
 - Still 5 dimensional
 - Potentially less accurate
- Verdict: Used for verifying Ohmic analysis

Examples

	Vehicle mass	m _{MHD, a}	Р_{МНD, а}	TSPC _a	l _{sp, a}	т _{мнд, р}	I _{sp, p}
Units	kg	kg	W	W/mN	km/s	kg	km/s
Landsat 9	1512	123.3	430	130.8	4.206	51.10	10.148
TROPICS	3.9	0.232	1.5	93.57	4.360	0.04553	22.231
Zenit-2 ADR	9000	395.5	2550	198.9	10.657	395.5	10.657

- Use cases
 - Small vs. large
 - Inclined vs. equatorial
- Passive vs Active
 - Satellite lifetime

